Survey of Disability Overview of Surveys and their design considerations By

Rajendra Singh

Presented at the Expert Group Meeting on the Guidelines and Principles for the Development of Disability Statistics, 12-14 July 2017 UN Headquarters, New York

- Goals of the survey
- Population of interest (target population) and sampling frame
- Type of disability surveys
- Approaches of sampling
- Estimation of sample size
- Documentation
- Summary
- Issues for discussion

- Goals important to design a survey
 - Prevalence rate could be defined as:
 - At least one of the disabilities or by type of disability such as hearing, seeing walking, bathing, etc.
 - By demographic or socio-economic characteristics such as sex, age, employment status or income level, etc.
 - By level of geography states, urban/non-urban, etc.
 - By any combination of above
 - Concepts of disability characteristics should be practical and could be implemented correctly
 - Precision two options:
 - Coefficient of variation (CV)
 - Margin of error

- Population of interest (target population) and sampling Frame:
 - Objectives identify target population, for example,
 - Any disability in the population entire population
 - Disability rate for a province population of province
 - Disability rate for school children population of school children
 - Type of disability of persons living in long-term care centers population living in long term care centers
- Sampling Frame data source(s) from which a sample is selected
- Sampling Frame should
 - Represent population of interest
 - Be complete
 - Be recent or current
 - Be accurate
 - If above conditions not satisfied, take steps to meet above conditions

- Approaches for sampling
 - Three main approaching for sampling:
 - a) Standalone disability sample of HHs
 - A sample of enumeration areas (EAs)
 - Stratify EAs to form strata
 - Select EAs within stratum proportional to their population size
 - Select a sample of households (HHs) within selected EAs
 - Identify HHs with at least one person with disability
 - Partitions sampled HHs into two strata
 - One with HHs with at least one identified disabled person
 - Second with HHs with no identified disabled person
 - Select sample of HHs from both strata
 - Select a large sample of HHs from strata with disabled person
 - Select a small sample of HHs from strata with no disabled person

- Standalone sample of HHs (Continued)
- Advantages:
 - More complete in terms of target population
 - Would collect detailed data on disability as its primary goal
 - Would collect demographic and/or economic characteristics of disabled persons as needed
 - Provide more insight about the disabled persons' conditions
 - Greater flexibility
- Disadvantages:
 - It is expensive
- Limitation:
 - Budget

- Main sampling approaches (continued ...)
 - B) Incorporate a disability topical module in a survey
 - Before using the survey to attach a topical module one must:
 - Understand the sample design of the survey to be used for topical module (target population, oversample, etc.)
 - Understand the limitation for using the survey (sample size, number of disability questions for topical module, etc.)
 - Understand the effect on main survey
 - Understand the implication on disability data (precision, limitations on amount of data)

Incorporate a topical module (continued ...)

Advantages:

- Allows comparison of disabled persons with general population
- It is economical

Disadvantages:

- Respondent burden may adversely affect primary survey response rate
- May provides fewer details on disability questions since it's not a primary disability survey
- Sample size constraint due to main survey sample size
- Less flexibility

Limitations:

- Sample size
- Amount of data on disability

- Main sampling approaches (continued ...)
 - C) Standalone sample using administrative list(s)
 - Two types of lists a list of persons and a list of institutions
 - 1) List of Persons
 - Use organizations (stakeholders) with knowledge of lists with disabled persons to obtain all lists to form complete target population
 - Combine multiple lists together into one list
 - Stratify the disabled persons on list(s)
 - By geographical location (province, urban, rural, etc.)
 - By type of disability even if rates are not needed by type of disability
 - Select random sample from each stratum

- Standalone sample using list (continued ...)
 - 2) List of institutions
 - Use organizations with knowledge of lists of institutions
 - Create a combined list of persons for each type of institution
 - Stratify institutions
 - By their geographic location
 - By type of institutions (long term care center, home for assisted living or elderly, etc.)
 - Select
 - Simple random sample OR
 - Select a sample proportional to the number of disabled persons residing in each institution, and then select a random sample within the sampled institutions

- Standalone sample using list (continued...)
 - The following applies for both types of list(s)
 - Unduplicate persons that are in two or more lists or institutions to get correct selection probability to result in unbiased results
 - Bias results for disabled population if list incomplete or inaccurate
 - Correct for bias due to incomplete or inaccurate list
 - For an incomplete list
 - » supplement list sample with general population sample
 - » Select a larger sample from list frame and a smaller sample from general population
 - For inaccurate list, determine the source of inaccuracy and take steps to correct the list
 - Unduplicate persons that are in two or more lists a difficult process unless persons have unique IDs

- Standalone sample using list(s) (continued ...)
 - Advantages:
 - Good for target population such as persons with known disability, homes for elderly, long term care centers, home for assisted living, etc.
 - Easy to select simple random or systematic random sample
 - Possible to use stratified PPS sample to reduce cost
 - Disadvantages:
 - Requires preparatory work
 - » Check for list completeness
 - » Check list for accuracy
 - » Check list for being current
 - » Check if persons on the list can be located
 - » Creating frames by combing multiple lists (different formats, different order of field locations, etc.)
 - » Supplement list sample with general population HH sample if list is incomplete
 - Limitations:
 - Complexities may limit sharing and combining lists
 - Not always possible to get a complete and accurate list

- Sample size considerations objectives and budget
 - Objectives
 - Disability prevalence rate
 - Precision of prevalence rate -- two types
 - Coefficient of variation (CV)
 - Margin of error
 - Budget

• Parameters needed to estimate sample size are

- Rate of disability prevalence if unknown, use the best guess based on the available information
- Precision for prevalence rate
- Estimate of design effect if unknown, use the best guess based on available information

• Formula to calculate the sample size based on CV requirement;

$$n = \frac{q}{(CV)^2 p} Deff$$

Where

р

q

n	=	Sample s	size in	terms	of person	IS
---	---	----------	---------	-------	-----------	----

= Disability prevalence rate

Deff = Design effect

Finite population correction (FPC) factor is assumed to be 1 when n is very small compared to total population size. The sample size formula that include FPC will multiply sample size 'n' by FPC factor [(N-n)/N] where N population size.

- Design effect (Deff) is defined as
 - A factor by which the sampling variance for a survey is increased over that which would come about if a simple random sample was used with the same sample size.
 - Mathematically, it is defined as:
 - Deff = $1 + \rho$ (m 1), where
 - ρ is the intraclass correlation and represents the clustering effect for the characteristic in question
 - m is the (average) size of the cluster
 - Deff is always ≥ 1.0 ;
 - Deff = 1 for only simple random sample

- Design effect role in sample size computation
 - Most of the countries use personal interviews to collect survey data
 - To save cost, generally simple random sample is not used instead a multi-stage stratified cluster sample is used
 - Cluster sample increases variance over simple random sample
 - Clustering effect high if characteristics under study is highly clustered
 - Disability is not expected to be highly clustered in general population survey -- multi-stage stratified cluster sample preferred
 - Disability is expected to be highly clustered in institutional population such as long term care centers, elderly housing, etc. – simple random sample preferred

- Estimation of sample size
 - Initially estimate the sample size for each target population that meets objectives
 - Budget may not support such a sample size, therefore,
 - Determine the largest sample that can be supported by the budget
 - Consider trade-offs to use sample size supported by budget
 - Consider changing objectives (prevalence rate or precision or both) to remain in budget
 - Consider getting additional budget to support larger sample
 - Most likely it would be an iterative process to reach at final sample size
 - Discuss with sponsor(s) of the survey about the implications of insufficient budget

- Survey documentation an important aspect
 - Document for
 - Future references, and
 - To inform data users
 - Document should include
 - Sampling methodology
 - Estimation methodology
 - Quality of survey data including its strengths and weaknesses
 - Limitations of the data

- Summary
 - Main considerations in designing a reliable and affordable survey are:
 - Objectives
 - Precision
 - Budget
 - Additional information (distribution by type, sub-national, etc.) would require larger sample
 - Increase efficiency of design by
 - Designing a stratified cluster sample
 - Using list/administrative frames when possible and disabled persons on list can be easily located
 - Screening for disability on national survey or on census of population and housing

- Summary (continued ...)
 - Ensure that the frame is complete, accurate and current, if not current, take steps to bring up to date
 - Use enumeration area (EA) as first stage of sampling from general population frame
 - Reduce bias when using list frames by
 - Supplementing list frame with general population frame
 - Unduplicate persons in different frames to get correct selection probability
 - Use multi-stage stratified sample when appropriate

- Summary (continued ...)
 - Use Proportion to population size (PPS) sampling scheme to select first-stage sample units
 - Reduce design effect by reducing cluster size
 - Consider adjusting objectives if insufficient budget
 - Document sampling and estimation procedures
 - Document data quality including its strength and weaknesses
 - Document limitations of data

- Issues for discussion
 - What frame should be used? Census, list or list combined with general population frames.
 - Should disability survey use a standalone design?
 - Should topical module be used in a survey to collect disability data?
 - In case of using topical module, how to increase sample for disability module if primary survey does not have sufficient sample? (ex. collect data over several different time periods – months, quarters or years subject to primary survey design)

Thank you Rajendra Singh